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The New York City taxi business is one of the interesting fields for data analysis. The
analysis is done on spark and it concentrate on the duration of wait time for the
drivers after a successful ride based on location. The data used is from NYC Taxi and
Limousine department. The geospatial and temporal data is made to good use in

spark and the insights are derived. The final result that is desired is in the form of
location and average wait time for next passenger. Hence the data can be used to find
the good place to get the customer or lesser wait time in order to get the next customer.
The results are pretty assuring and sensible. For example, it is possible to get customers
quicker in Manhattan than in Bronx and the output exactly shows that.

INTRODUCTION

Taxi business is one of the largest in New York City
(Farber, 2008). The way the yellow taxi works is that
the drivers should be working in shift to limit the
number of taxicab that is running in the city (Camerer
et al., 1997). The reason they work in shift is because
they want to limit the number of taxicabs that run at a
given time in the road (Ferreira et al., 2013). The other
reason is everyone in the taxicab business has to get
equal number of customers and the profit that everyone
makes is almost equal (Harcourt et al., 2006). Hence
this approach has got a lot of appreciation from the
cab drivers and has been followed (Ryza et al., 2015).
There are two types of taxi cabs that run in New York
City (Splechtna et al., 2016). One is New York City
Yellow Taxi cab that we are analyzing in this project.
The other type is New York City Green Taxi cab which
is also popular but not as popular as yellow taxi cab.
That is the reason we analyze only New York City
yellow taxi cab in this analysis. The main objective of
this project is to find the time when the cab is occupied
and when it is not. It can be found by using the

passenger destination location. For example, if a
passenger gets down at Bronx, NY, the time taken for
the next passenger is 5 min and if the passenger gets
down in Long Island, NY, the time taken for next
passenger is 40 min, the result will be that Bronx is
better place to get next customer quickly.

DATA

The data is available from January 2013. The size of
the data is 2.5GB before unzipping and uncompressing.
Hence setting up Spark for 2.5GB of compressed data
is not a reasonable task. The data is in Comma
Separated Format (CSV). The variables include latitude,
longitude, temporal data such as date and time. The
data after unzipping and uncompressing is around
20GB. So for analysis purpose, we take just the data
for January 2013 data. The reason being that the data
is huge and analyzing just one-month data looks
reasonable. Therefore the code runs faster and we can
see how the model is built quicker and make
modifications and check the process again. In other
words, for checking the code and de bugging and
finding how good is the model, we are choosing a
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month data. The data seems to be sufficient to start
the analysis.

METHOD

The process for the project is as follows. We know what
we need to have in order to complete the analysis. We
set up all the tools and libraries needed to complete
the analysis. The process needed to set the environment
is connecting to Amazon Web Services EMR, Uploading
Data In The S3 Bucket, installing spark and running
spark and Importing The Data From S3 Bucket. Each
of these steps are clearly explained on how to set up in
mac system. Windows system also follows similar
procedure but the only change is in place of terminal,
you have to use command prompt or anaconda prompt.
The connectivity with Amazon Web Services EMR has
to be done with Putty. Putty is a connectivity terminal
similar to the terminal command. The key pair
generated, call pem file, is the tricky part because the
permission can be given easily in terminal but have to
follow a different approach in Putty. Hence if using
Windows, follow the instruction given in the manual
developed by the Putty developers to establish the
connection with the Amazon Web Services EMR.

Connecting to Amazon Web Services EMR

The Steps for connecting to Amazon Web Services EMR
involves three steps. The first step is to create an EMR
instance. The second one is to create a create a key
pair. The third step is to connect to the local system
using terminal. We shall go in detail for each step. To

mbp—p20§—d510:~ vsubramaniam$ cd Downloads/
mbp-p203-ds1@:Downloads vsubramaniam$ chmod 60@ nyc.pem

create the key value pair, go to key pair options in the
home page. Click on new key pair. Give a new name to
it. Download the key pair and know the location where
it is saved. To create a EMR instance, login into your
Amazon Web Services console site. Select EMR option
from the Analytics section. Then click on create cluster.
The quick option windows opens up. Under Software
Configuration, choose Spark: Spark 2.0.1 on Hadoop
2.7.3 YARN with Ganglia 3.7.2 and Zeppelin 0.6.2.
Under Hardware Configuration section, choose the
number of clusters to be 4. Under Security and Access
window, select the key pair you created and click next.
Go to advanced settings and check for the master node
and slave nodes. To connect to the local server, open
the terminal. Give the key pair access power by typing
the following command CHMOD 600 /keyname.pem.
Then connect to the EMR by clicking the ssh - I key
name.pem Hadoop@ec2 - 35 - 160 — 198 - 2.us -
west — 2. compute amazonaws. com. It will ask a
prompt message whether to continue, enter yes. The
terminal will run successful and EC2 image will be
displayed along with a successful message as shown
in Figure 1.

Uploading Data to the S3 Bucket:

To access the huge data that we will use, we upload it
to a $3 Bucket. $3 is available from Storage and Content
Delivery section. $3 is nothing but a storage place for
data that we will use for our analysis. The steps to
upload the data into S3 is very simple. After clicking
the S3 icon under the Storage and Content Delivery

mbp-p203-ds1@:Downloads vsubramaniam$ ssh —-i nyc.pem hadoop@ec2-35-160-198-2.us-west-2.compute.amazonaws.com
The authenticity of host 'ec2-35-160-198-2.us-west-2.compute.amazonaws.com (35.160.198.2)"' can't be established.
ECDSA key fingerprint is SHA256:VhvPhDvPwBYsXYz2gAf86L00YXvvbBo+vUF/QEI+xfg.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added 'ec2-35-160-198-2.us-west-2.compute.amazonaws.com,35.160.198.2' (ECDSA) to the list of known hosts.

Last login: Fri Nov 11 17:52:58 2016

)

Amazon Linux AMI

- /
N

https://aws.amazon.com/amazon-linux-ami/2016.09-release-notes/
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[hadoop@ip-172-31-2-29 ~]$

Figure 1: EMR installation
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section, a new page opens. Click the create bucket icon.
Give a name to be your folder name. Click create icon.
Then go inside the folder and click on upload icon.
Browse through your computer to select the data and
click upload. After the data is uploaded successful,
check if the data is available in your S3 Bucket. In our

e

g Services v

Create Folder  Actions v Q

All Buckets / nyctaxidata123

Resource Groups v %

Name
i j-2L9E79RYQBKQ1
D trip_data_1.csv

D trip_fare_1.csv
Figure 2: S3 Bucket

Running Spark

After the data is successfully uploaded, we run spark
in our local system. The spark is run on the terminal.
So, open the terminal and ran the command spark-
[hadoop@ip-172-31-2-29 ~]$ spark-shell

\Setting default log level to "WARN".
To adjust logging level use sc.setLogLevel(newLevel).

case, as the data is huge we subset our data. The Data
uploaded is for one month. The original data had
data for 2 years but to test the code against a smaller
chunk of data, uploaded January 2013 data in the S3
bucket. The S3 Bucket after uploading is shown in
Figure 2.

VenkateshSubramaniam @ 583... v  Global v  Support v
None Properties Transfers @
Storage Class Size Last Modified
Standard 22GB Tue Nov 08 15:02:40 GMT-500 2016
Standard 1.5GB Tue Nov 08 15:05:05 GMT-500 2016

shell. The command runs and prompts whether to run
spark, enter yes. The command will run successfully
and spark is shown in the terminal. The command
output is shown in Figure 3.

16/11/11 18:18:49 WARN Client: Neither spark.yarn.jars nor spark.yarn.archive is set, falling back to uploading libraries under SPARK_HOME.
16/11/11 18:19:03 WARN SparkContext: Use an existing SparkContext, some configuration may not take effect.

Spark context Web UI available at http://172.31.2.29:4040

Spark context available as 'sc' (master = yarn, app id = application_1478635431473_0005).

Spark session available as 'spark'.
Welcome to
/e ] __
AN\ N/ L
Y AT A NN B A B AV
/_/

version 2.0.1

Using Scala version 2.11.8 (OpenJDK 64-Bit Server VM, Java 1.8.0_111)

Type in expressions to have them evaluated.
Type :help for more information.

Figure 3: Spark Installation

Running Spark from Databricks

The reason for running the Databricks is because the
output is more clear and easy to understand. The same
command works in the terminal as well. So open the
Databricks site and open a notebook selecting the Scala
language if you are using Databricks. If you are using
terminal, then you don’t need to do anything as running
spark in terminal will enable you to run Scala code. If
you are running directly with Databricks, you do not
need to set up the Spark in the terminal as Databricks
runs in the web and has its own Spark set up with the
notebook.

Importing the Data from a S3 Bucket

To connect with the S3 Bucket from Databricks needs
a command. The tricky part is to know the difference

between S3, S3n and S3a. The letter change makes a
big difference because the algorithm it uses to interface
with the Databricks is different. The S3 is a block
based overlay on top of the Amazon S3 Bucket
whereas S3n and S3a is a object based overlay on the
top of Amazon S$3 bucket. The difference between S3a
and S3n is that S3n can handle the objects up to 5GB
in capacity whereas S3a can handle the objects up to
5 Tera Bytes. When we compare the performance
between S3a and S3n, the performance for S3a is
higher than S3n. The reason is because they are multi
part upload. The difference is illustrated in the table
in Figure 4.
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Block-based overlay on top of
Amazon S3

data

Only the data should be present
and not any other file

Figure 4: Difference between S3, S3n and S3a

The command to connect the DataBricks with S3
Bucket is as follows
val data = sc.textFile(“s3n://nyctaxidatal23/
nyc.pem”)

Choosing the Libraries

The advantage of using Scala is because it has got a
variety of libraries and library dependencies that can
make our analysis process easy and accurate. The
disadvantage of the same point is one should have a
knowledge about what packages to use in order to make
full use of the Spark with Scala combination. There
are many similar packages with same functionality but
the algorithm used to obtain results is different.
Changing between these packages can actually affect
your results because the algorithm is important. So,
we use our packages carefully to make our analysis
easy and accurate. The coding is based on few existing
libraries. The library Kyro is used to serialization so
there is a serializable interface to work on. The
disadvantages of using Maven and SBT to deal with
the external dependencies are because we want our
application to be interactive. So we choose libraries
with lesser dependencies. Java libraries with Scala
Wrappers are the best solution to the above problem.
There is date and time data , so as a beginner one
would choose Java temporal class but the disadvantage
is they use space for small operations. So using
NScalaTime and JodaTime is better as they have
advantage over the Java class.

Reading the Temporal Data

Temporal Data is a data consisting of time frame details
such as Date, Time, Year, Quarter, Decade. The time
data is always important component of analysis because
if they are present, the scope of analysis increases to
different dimension. The data is read using NScalaTime
and JodaTime libraries. The import and manipulation
of data is illustrated in Figure 5.

Object based with up to 5GB file

Object based with up to 5TB file
data

Any Number of data can be present Any number of data can be present

Import NScalaTime
and JodaTime

!

Read Temporal Data
into the workspace

l

Convert the Date and
Time into “yyyymm-
dd HH:mm:ss”

Figure 5: Workflow for importing the Temporal Data

The libraries to read the temporal data are
nscala_time and JodaTime. The nscala_time library is
built around joda library. It is nothing but Scala Wrapper
which is used to add, subtract or find duration between
dates. The usage is also simple, that is you can call by
simply calling a function. JodaTime is a standard date
and time format based for creating new packages. It
has a simple API, which allows users to access with
multiple calendar systems. As you can see in the below
example, with the help of nscala library, a new Date
Time is created. The operation of addition is performed
on the two date variables. The second operation
performed is subtraction on the two date variables.
Following that, the next operation performed is duration
between two date columns. This is just an example to
explain the functionality of the nscala library. The .get
will render the date in the format specified by the
function used before the .get function. This is the
advantage of using temporal data on the Scala platform.
Joda Time library is a dependency, so it is added as a
central package in the DataBricks notebook.
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> dmport com.github.nscala_time.time.Imports.

import com.github.nscala_time.time.Imports.

Command took 5.23 seconds -- by vsubramaniam@saintpeters.edu at 11/10/2016, 5:43:00 PM on My Cluster (6 GB)

> val dtl = new DateTime(2014, 9, 4, 9, 0)

dtl: org.joda.time.DateTime = 2014-09-04T09:00:00.000Z

Command took ©.70 seconds -- by vsubramaniam@saintpeters.edu at 11/10/2016, 5:43:15 PM on My Cluster (6 GB)

dtl.dayOfYear.get

res8: Int = 247

Command took 0.10 seconds -- by vsubramaniam@saintpeters.edu at 11/10/2016, 5:17:19 PM on My Cluster (6 GB)

> val dt2 = new DateTime(2014, 10, 31, 15, 0)

dt2: org.joda.time.DateTime = 2014-10-31T15:00:00.000Z

Command took ©.16 seconds -- by vsubramaniam@saintpeters.edu at 11/10/2016, 5:43:23 PM on My Cluster (6 GB)
Figure 6: Code used to import the temporal data

import java.text.SimpleDateFormat

import java.text.SimpleDateFormat

Command took ©0.09 seconds by vsubramaniam@saintpeters.edu at 11/10/2016, 5:43:52 PM on My Cluster (6 GB)

val format = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss")

format: java.text.SimpleDateFormat = java.text.SimpleDateFormat@4f76f1la®

Command took ©.11 seconds -- by vsubramaniam@saintpeters.edu at 11/10/2016, 5:43:57 PM on My Cluster (6 GB)

val date = format.parse('"2014-10-12 10:30:44")

date: java.util.Date = Sun Oct 12 10:30:44 UTC 2014

Command took ©0.16 seconds by vsubramaniam@saintpeters.edu at 11/10/2016, 5:44:00 PM on My Cluster (6 GB)

val datetime = new DateTime(date)

5:44:03 PM an Muv Clucter (£ GR)
S:44:83 PN on My Cluste: £€ c83
val d = new Duration(dtl, dt2)
d: org.joda.time.Duration = PT4946400S
Command took ©.11 seconds by vsubramaniam@saintpeters.edu at 11/10/2016, 5:44:41 PM on My Cluster (6 GB)

Figure 7: Code used to format the temporal data
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Reading the Geospatial Data

Geospatial data is a data that consists of location
information such as latitude, longitude, zip code,
borough, city, state, country, continent or any other
parameter used to locate a place. There are two types
of geospatial data, one is vector and the other is raster.
The data provided by the nyctaxi is a vector with
GeoJSON format. The obstacle here is to make sure
that the coordinates are present in the New York
Borough. There is no existing library that can solve the
above problem, so the existing Esri Geometry API is
edited to the convince of the problem. The Esri
Geometry API has GeometryEngine that is used to find

import com.esri.core.geometry.Geometry
import com.esri.core.geometry.GeometryEngine

import com.esri.core.geometry.SpatialReference

import com.esri.core.geometry.Geometry
import com.esri.core.geometry.GeometryEngine
import com.esri.core.geometry.SpatialReference

class RichGeometry(val geometry: Geometry,
val spatialReference: SpatialReference =
SpatialReference.create(4326)) {

def area2D() = geometry.calculateArea2D()
def contains(other: Geometry): Boolean = {

relationship between coordinates. The main advantage
of using Scala for geospatial data is to use the esri
geometry. The .com esri geometry is a API used for 3%
party data processing solutions. The main usage is for
map reduce users or using map reduce applications for
Hadoop system. It is used to import the geometry from
the shape files. The shape file is nothing but a map
built based a geometric shape. The geometric shapes
can be polygon, triangle, square, rectangle, circle and
their like. The spatial operations such as union,
difference, intersect, clip, cut and extension of
boundaries can be done. The map relationships can
also be explored with the help of the esri.

GeometryEngine.contains(geometry, other, spatialReference)

1
def distance(other: Geometry): Double =

GeometryEngine.distance(geometry, other, spatialReference)

defined class RichGeometry

Figure 8: Code used to load the geospatial data

Using the GeoJSON package

GeoJSON is a JavaScript Object Notation for
representing geographical locations. The features
include points (address and location), line strings
(streets, highway and boundaries), polygon (countries
and region of land) and other types related to location.
The layer is added and the vector locations are added
to the layer. The spray package is a light lightweight
JSON file implemented in Scala. It is used for efficient
JSON parser. The spray package also allows you to
convert String JSON documents, JSON Abstract Syntax
Trees (AST) with base type JsValue and instances of
arbitrary Scala types. The Conversion can be between

String JSON documents and JSON Abstract Syntax Trees
(AST) with base type JsValue or JSON Abstract Syntax
Trees(AST) with base type JsValue and String JSON
documents or JSON Abstract Syntax Trees(AST) with
base type JsValue and instances of arbitrary Scala types
or instances of arbitrary Scala types and String JSON
documents or JSON Abstract Syntax Trees (AST) with
base type JsValue or String JSON documents and
instances of arbitrary Scala types or instances of
arbitrary Scala types and String JSON documents. It
utilizes SJSONs Scala-colloquial sort class-based way
to deal with interface a current sort T with the rationale
how to (de)serialize its occurrences to and from JSON.
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(Indeed shower json even reuses some of SJSONs code,
see the “Credits” segment underneath). This approach
has the benefit of not requiring any change (or even
access) to Ts source code. All deserialization rationale
is appended ‘all things considered’. There is no
reflection included, so the subsequent transformations
are quick. Scala’s superb sort derivation lessens
verbosity and standard to a base, while the Scala
compiler will set aside a few minutes that you gave all
required (de)serialization rationale. In shower jsons
wording a “JsonProtocol” is only a group of verifiable
estimations of sort JsonFormat, whereby each

JsonFormat contains the rationale of how to change
over occasion of T to and from JSON. All JsonFormats
of a convention should be “mece” (fundamentally
unrelated, all things considered thorough), i.e. they are
not permitted to cover and together need to traverse
assorted types required by the application. This may
sound more entangled than it is. splash json
accompanies a Default Json Protocol, which as of now
covers the greater part of Scala’s esteem sorts and
additionally the most essential reference and gathering
sorts. For whatever length of time that your code utilizes
simply these you just need the Default Json Protocol.

warning: there were 1 feature warning(s); re-run with -feature for details

defined module RichGeometry

warning: previously defined class RichGeometry is not a companion to object RichGeometry.

Companions must be defined together; you may wish to use :paste mode for this.

import RichGeometry._

import RichGeometry._

import spray.json.JsValue

import spray.json.JsValue

Figure 9: Code used to process the geospatial data

Handling noise in the data

The size of the data is so large that it is impossible to
find invalid values in them. So we create a exception
in the code to jump to next value if there is a invalid
entry. It can be done by creating a function called
safeParse() and apply these conditions. The other option
is to use try catch to filter invalid records. This method
is feasible only when there is small fraction of the data
is invalid. The filtering and mapping is done together
to get rid of invalid records with the help of collect
statement. The collect statement takes partial function
as a argument. Most of the invalid records in the data
is missing values, so it is easy to identify and get rid of

it. For temporal data, the time when a passenger takes
the ride will always be earlier to the time when he/she
reached the destination. If the condition is not true,
then the record is invalid. These kind of problems may
occur because of the data quality distortion when it is
imported into the workspace. To overcome the problem,
we define a function called hours(). The function is
calculated by the difference between (destination time
- pick off time). For example, if the pick up time is
Monday morning 10 am and drop time is Monday
morning 9.30 am. The record is nothing more than
noise because the event is highly impossible. The pick
up time should always be less than the drop off time.
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Taxi Pickup Location based on Money Value
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Figure 10: Plot of the geospatial data for NYC taxi

To be on a lighter note, it is only possible if pick up guy
and drop him off using a time travel. Handling this kind
of noise is important because these factors will affect
the accuracy of the model which build at the end.

Hours() = Time when reached destination - Time
when the journey started

The negative values are removed because it doesn’t
make any sense as the start time will never be greater
than end time.

Location Analysis

The data is concerned about five boroughs, so the data
which has a destination outside these borough will be
invalid data as the taxi won’t be used for distance greater
than two boroughs. The objective can be achieved by
converting the pickup latitude, longitude and drop off
latitude, longitude and convert it into borough. Then a
conditional statement will parse the records that are in
those five boroughs. Filtering of the invalid records are
done and the final data is good for analysis. To elaborate
on that, if we have a data that is outside USA or outside
the five borough is present, the location outside the scope
of the dataset we are dealing with. So if the present data
is for London, London is not in the country we analyze
or present in the five boroughs we specifically analyze.
So, we remove the location data from the remaining
date. So, after this cleaning process, the data will have
location as either of these five boroughs. This cleaning
process is followed by the sessionization of the data so
we do not loose sight of any data.

Objective re-declaration

The main objective of the problem is to find the wait
time for a driver after dropping a passenger based on

the location or borough. For that, we use a concept
called sessionization. It means keeping the records of
a single driver as a entity. This tool is helpful to find
insights about the data and the relationship between
the entries. The analysis uses the behavior of the data
to find patterns.

Building sessions

The session in spark is built by using groupBy
statement. The data is grouped based on the driver id
or driver name. The method works better when there
is small amount of records in each entity. The reason
why it works for small data is because the records
should be in memory for computation. So the
alternative approach is secondary sort on a composite
key of identifier and time stamp. This approach accepts
RDD key value pair that we want to operate, input of
value and extraction of secondary key to do sorting,
optional splitting function that takes input as sorted
value and split same key to multiple groups ie. Records
from the same driver, number of partitions in RDD.
The secondary key mentioned in the explanation is
nothing but the start time of the trip. The innocent
approach to make sessions in Spark is to play out a
groupBy on the identifier we need to make sessions
for and afterward sort the occasions post-rearrange by
a timestamp identifier. On the off chance that we just
have a little number of occasions for every element,
this approach will work sensibly well.

import import
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Figure 11: Workflow showing the analysis of the NYC taxi data
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Since this approach requires every one of the
occasions for any specific substance to be in memory
in the meantime, it will not scale as the quantity of
occasions for every substance gets bigger and bigger.
We require a method for building sessions that does
not require the majority of the occasions for a specific
element to be held in memory at the same time for
sorting. In MapReduce, we can construct sessions by
playing out an optional sort, where we make a
composite key made up of an identifier and a timestamp
esteem, sort the greater part of the records on the
composite key, and after that utilization a custom
practitioner and gathering function to guarantee that
the greater part of the records for a similar identifier
show up in a similar yield parcel. Luckily, Spark can
likewise bolster this same auxiliary sort design by
making utilization of its repartition And Sort Within
Partitions change. In the repo, we’ve given a usage of
a group By Key And Sort Values arrangement that does
precisely this. Since the workings of this usefulness
are generally orthogonal to the ideas this section is
covering, we are overlooking the violent subtle
elements here.

Analysis

Deciding the threshold for the wait time of the taxi
driver based on the location or borough is a bigger
challenge because fixing the threshold is important for
deriving insights. So splitting the data with different

threshold and doing the analysis is always a better
option. Running the analysis with threshold as 4 hours
and again running the same analysis with the threshold,
as 3 hours and comparing would give a clear picture.
Creating a pipeline for this operation is an expensive
work, so we use session data containing entity and
each entity as driver records for all operations. So, we
store the session data into Hadoop Distributed File
System (HDFS) so that it can be called easily when it is
needed. To see the time taken for the driver to find
next passenger, we create a function called
boroughDuration method. The complete workflow of
the analysis is shown in Figure 11.

boroughDuration = drop off time of Nth trip - pick
up time of the N + 1 th trip

We find the difference between drop off time and
next pick up time. We aggregate the duration of wait
time of each drivers based on the location or borough
so the output will be average wait time and the location
or borough. We have to make sure that the
boroughDuration is not negative because the negative
values suggest that it is not taking the previous trip
drop off time and the pick up time of the new trip. So,
after applying the filter the output looks good to
analyze. The error is being studied with the help of
Spark’s StatCounter. But there was no pattern found
that would help explain the negative values. The final
output is sorted so that the order specifies the lesser
number of wait time.

import org.apache.spark.util.StatCounter

boroughDurations.filter {

case (b, d) => d.getMillis >= 0

}.mapValues(d => {
new StatCounter()
s.merge(d.getStandardSeconds)

B

val s =

reduceByKey((a, b) => a.merge(b)).collect().foreach(println)

Figure 12: Code used to produce the output

RESULTS

The sorted output shows the order in wait time. So,
Manbhattan has the lowest wait time with an average of
10 min. Staten Island has a worst wait time of 45 min.
The results were used to fine drivers who rejected the
passengers who wanted to travel to these high wait
time borough or locations based on this insight. With
this information there are many things that can made

sense out of in the taxi business. The output gives a lot
of information about the wait time. The first element
is the name of the borough the result is being displayed.
The second element is the number of records that were
analyzed for this borough. The third element is the
mean. that is the mean time it takes to get the next
customer. The fourth element is the standard deviation.
The standard deviation is nothing but the amount of
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deviance that can be expected from the analyzed mean.
The fifth element is the maximum wait time. The
maximum wait time is the value for the highest wait
time taken by a taxi cab driver to get a next customer
for that borough. The sixth element is the minimum
wait time. The minimum wait time is the value for the
lowest wait time taken by a taxi cab driver to get a
next customer for that borough.

The above code helps you find the duration taken
by the taxi driver to get the next customer. The sorted
output is shown in the table in Figure 13.

(Some(Brooklyn), (count: 626231, mean: 1348.675465,
stdev: 1565.119331, max: 14355, min: 0))

(Some(Staten Island),(count: 2612, mean: 2612.24,
stdev: 2186.29, max: 13740, min: 0.000000))

Figure 13:Final output in the terminal window

DISCUSSION

There are so many research projects on the New York
City Taxi data, but the general analysis is similar to
this workflow but with few minor changes (Chirigati
et al., 2016). There is an amazing idea of equal income
to drivers. The main objective is to make all the cab
drivers to earn the same money by giving the busiest
locations to the drivers who has earned less in the
previous day. That is implemented by grouping the
number of occurrences of rides based on location and
sorting. This will give the most profitable location and
this was done by (Farber, H. S., 2008). The other
interesting concept is labor supply. Depending on the
demand, supply the drivers to a specific location or
not spending too much resources on a location that
doesn’t require more than fewer taxi cabs. This was
implemented by grouping the the number of
occurrences of rides based on location and sorting. But
this time using the same data to allocate resources.
This project was cited from (Camerer, 1997). The
workflow of the Geospatial and Temporal Data Analysis
on the New York City Taxi Trip Data also follows similar
method but the objective is different (Cibulski et al.,
2016). The scope of the project could have been
different, like using the data to find the effective
working hours for the drivers based on the peak hours
and dry hours. The efficient way of shift working can
be made with the help of the data (Huang et al., 2016).
An examination concentrates on an especially vital

urban information set: taxi trips. Taxicabs are profitable
sensors and data connected with taxi outings can give
remarkable understanding into a wide range of parts
of city life, from financial movement and human
conduct to versatility designs (He et al., 2016). Be that
as it may, investigating these information presents many
difficulties. A research project proposed another model
that permits clients to outwardly question taxi trips
(Xu et al., 2016). Other than standard examination
inquiries, the model backings birthplace goal questions
that empower the investigation of versatility over the
city. They demonstrate that this model can express an
extensive variety of spatio-transient inquiries, and it is
additionally adaptable in that can questions be made
as well as various conglomerations and visual
representations can be connected, permitting clients
to investigate and think about results (Al-Dohuki et
al., 2017). They have assembled a versatile framework
that executes this model, which underpins intuitive
reaction times, makes utilization of a versatile level-of-
detail rendering system to produce mess free
representation for vast results, and shows shrouded
subtle elements to the clients in a rundown using
overlay heat maps (Zeng et al., 2016). The data taken
as driver sample can be used to predict the efficient
working hours so that the cab drivers works smart and
not hard. The other project idea that can be done is the
using the time data to find the quarter of the year where
the business is good and when the business is bad, so
that there can be part time drivers who can work when
the period is good and do some other work when the
period is dry. Hence, with the help of these kinds of
information, the taxi business industry can reach
different heights.

CONCLUSION

The workflow of the Geospatial and Temporal Data
Analysis on the New York City Taxi Trip Data also
follows similar method to that of research papers but
the efficiency of filtering out invalid data and having
a seamless flow process makes the difference. The
spark is well utilized by applying all the necessary
data manipulation and modifying the existing libraries
to the project requirement. The advantage of using
the Scala package to effective use for the project
objective is the highlighting factor. The improvements
can be made in the areas like sorting the final output
to make better sense out of the result. Using the output
to something bigger would been another
improvement, For example, using the output to find
the best time of the year where the business is at its
peak or the period where the drivers found it hard to
get customers.
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